

ОТЧЁТ по экологической безопасности

Открытое акционерное общество «Государственный научный центр – Научно-исследовательский институт атомных реакторов»

СОДЕРЖАНИЕ

1.	ОБЩАЯ ХАРАКТЕРИСТИКА НИИАР	3
	1.1. Основные виды деятельности	4
	1.2. Сведения об акционерах	4
	1.3. Сведения о филиалах и представительствах	4
2.	ЭКОЛОГИЧЕСКАЯ ПОЛИТИКА	5
3.	ОСНОВНАЯ ДЕЯТЕЛЬНОСТЬ	6
	3.1. Положение в отрасли	6
	3.2. ПРИОРИТЕТНЫЕ НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ	6
4.	ПРИРОДООХРАННУЮ ДЕЯТЕЛЬНОСТЬ 4.1. НОРМАТИВНО-ПРАВОВЫЕ АКТЫ РФ. 4.2. ПЕРЕЧЕНЬ РАЗРЕШАЮЩЕЙ ДОКУМЕНТАЦИИ ПО ОХРАНЕ ОКРУЖАЮЩЕЙ СРЕДЫ ДЛЯ ОАО «ГНЦ НИИАР».	
5.	4.3. Лицензии	10
J.	И МЕНЕДЖМЕНТА КАЧЕСТВА	11
	5.1. Экологический план	11
	5.2. Менеджмент качества	11
6.	ПРОИЗВОДСТВЕННЫЙ ЭКОЛОГИЧЕСКИЙ КОНТРОЛЬ	13
	6.1. Охрана атмосферного воздуха	
	6.2. Охрана водоемов	
	6.3. Охрана почв	17
	6.4. КОНТРОЛЬ ЗА ОБРАЩЕНИЕМ С ОТХОДАМИ ПРОИЗВОДСТВА И ПОТРЕБЛЕНИЯ	17
	6.5. Система радиационно-экологического мониторинга института	20
7.	ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ	23
	7.1. Забор воды из водных источников	
	7.2. СБРОСЫ ВОДЫ В ОТКРЫТУЮ ГИДРОГРАФИЧЕСКУЮ СЕТЬ	

7.2.1. Сбросы вредных химических веществ	24
7.2.2. Сбросы радионуклидов	
7.3. Выбросы в Атмосферный воздух	
7.3.1. Выбросы вредных химических веществ	26
7.3.2. Выбросы радионуклидов	
7.4. Отходы	
7.4.1. Обращение с отходами производства	29
7.4.2. Обращение с радиоактивными отходами	29
7.5. Удельный вес выбросов, сбросов и отходов	
ОАО «ГНЦ НИИАР» в общем объеме по территории	30
7.6. АКТИВНОСТЬ ОСНОВНЫХ ТЕХНОГЕННЫХ РАДИОНУКЛИДОВ	
В ОБЪЕКТАХ ОКРУЖАЮЩЕЙ СРЕДЫ В ЗОНЕ НАБЛЮДЕНИЯ НИИАР	30
7.7. ПОКАЗАТЕЛИ ОБЛУЧАЕМОСТИ ПЕРСОНАЛА ИНСТИТУТА	32
8. РЕАЛИЗАЦИЯ ЭКОЛОГИЧЕСКОЙ ПОЛИТИКИ	
В ОТЧЕТНОМ ГОДУ	32
9. ОХРАНА ТРУДА И БЕЗОПАСНОСТЬ НА ПРОИЗВОДСТВЕ	22
па пгоизводстве	
10. ЭКОЛОГИЧЕСКАЯ И ИНФОРМАЦИОННО-	
ПРОСВЕТИТЕЛЬСКАЯ ДЕЯТЕЛЬНОСТЬ	33
	2.1
11. АДРЕСА И КОНТАКТЫ	34

1. ОБЩАЯ ХАРАКТЕРИСТИКА НИИАР

Научно-исследовательский институт атомных реакторов создан в 1956 г. по инициативе академика И.В. Курчатова для инженерных и научных исследований в области атомной энергетики.

В настоящее время НИИАР является крупнейшим в России и одним из самых больших в мире научно-исследовательских экспериментальных комплексов атомной отрасли для выполнения системных научных и технологических исследований по актуальным направлениям развития ядерной энергетики.

В институте действуют: 6 исследовательских ядерных реакторов, три из которых – СМ, МИР и БОР-60 – уникальны; крупнейший в Европе комплекс для материаловедческих исследований элементов активных зон ядерных реакторов, образцов облученных материалов и ядерного топлива; комплекс для исследовательских работ в области ядерного топливного цикла; радиохимический комплекс и комплекс по обращению с радиоактивными отходами.

Экспериментальные возможности ГНЦ НИИАР позволяют выполнять:

- исследования элементов активных зон реакторов различного назначения, разработки и исследования топливных, поглощающих и конструкционных материалов для ядерных и термоядерных реакторов;
- комплексные исследования замкнутого топливного цикла ядерных реакторов, промышленного использования энергетического и оружейного плутония, фракционирования и трансмутации долгоживущих продуктов деления;
- программы, связанные с созданием исследовательских и инновационных ядерных установок различного типа, совершенствованием действующих реакторов атомных электростанций.

Институт имеет собственную учебную базу для повышения квалификации персонала и активно сотрудничает с региональными вузами по подготовке кадров как для института, так и для других организаций региона. В НИИАРе активно развивается Центр коллективного пользования.

ГНЦ НИИАР является разработчиком и производителем большой номенклатуры радионуклидов и источников ионизирующих излучений для науки, промышленности и медицины. Сотрудничество с Федеральным медико-биологическим агентством России позволит заметно расширить производство медицинских радионуклидов для нужд национального здравоохранения.

В институте ведутся природоохранные работы и исследования по изучению условий безопасной изоляции в глубинных геологических формациях малоактивных отходов и наземному хранению отработавшего ядерного топлива.

Производственный комплекс НИИАРа включает собственное энергетическое хозяйство, производящее электроэнергию, тепло, горячую и холодную воду,

вспомогательные производства для изготовления и ремонта оборудования, осуществления транспортных услуг, в том числе и в сфере перевозок ядерных грузов и грузов специального назначения.

1.1. Основные виды деятельности

Проведение научно-исследовательских и опытно-конструкторских работ по следующим направлениям:

- реакторное материаловедение;
- испытания и исследования материалов и элементов ядерных энергетических установок;
- создание научно-технических основ и промышленное освоение малоотходных технологий производства и переработки ядерного топлива;
- обращение с ОЯТ и РАО;
- получение и изучение фундаментальных физико-химических свойств трансплутониевых элементов;
- получение радиоактивных изотопов с высокой удельной активностью;
- разработка и создание радиоактивных источников ионизирующих излучений;
- разработка технологий изготовления и создание экспериментальных твэлов, тепловыделяющих сборок, стержней систем управления и защиты реакторов.

1.2. Сведения об акционерах

Единственным акционером ОАО «ГНЦ НИИАР» является ОАО «Атомэнергопром», входящий в состав Государственной корпорации по атомной энергии «Росатом».

1.3. Сведения о филиалах и представительствах

Филиалов и представительств нет.

2. ЭКОЛОГИЧЕСКАЯ ПОЛИТИКА

НИИАР позиционирует себя как организацию с высокой социальной ответственностью перед своими сотрудниками, членами их семей, населением региона и перед обществом в целом и определяет главприоритетом своей деятельности соблюдение принципов экологической безопасности, охраны окружающей среды, здоровья населения и персонала.

Экологическая полити-

ка НИИАР является частью общей политики Государственной корпорации по атомной энергии «Росатом», направленной на обеспечение экологической безопасности работы предприятий.

НИИАР осознает влияние своей научно-производственной деятельности на экологическую обстановку и стремится к оптимизации воздействия на окружающую среду.

Стратегия НИИАР основана на положениях «Экологической доктрины РФ» и следующих принципах:

- устойчивое развитие предприятия;
- равное внимание к экономической, социальной и экологической составляющим деятельности;
- предотвращение негативных экологических последствий деятельности;
- отказ от реализации проектов с непредсказуемыми последствиями для окружающей среды;
- плата за природопользование;
- открытость экологической информации и участие общества в подготовке, обсуждении, принятии и реализации решений в области охраны окружающей среды и рационального природопользования.

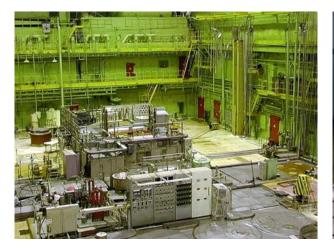
Обязательства НИИАР в области охраны окружающей среды:

- регулярный мониторинг научно-производственной деятельности с оценкой воздействия на окружающую среду;
- совершенствование системы управления охраной окружающей среды;
- улучшение экологических показателей производственных процессов;
- ограничение объемов образования опасных отходов, выбросов и сбросов загрязняющих веществ;
- вторичное использование отходов.

НИИАР гарантирует соблюдение плановых экологических показателей, организует обучение персонала с целью повышения уровня экологической грамотности, понимания ответственности каждого сотрудника института за состояние окружающей среды.

НИИАР готов сотрудничать со всеми заинтересованными государственными и общественными организациями с целью предотвращения загрязнения окружающей среды.

3. ОСНОВНАЯ ДЕЯТЕЛЬНОСТЬ


3.1. Положение в отрасли

Уникальная многопрофильная экспериментальная база НИИАР позволяет осуществлять научно-производственную деятельность по основным научным направлениям ядерной энергетики:

- разработка и демонстрация в опытном производстве инновационных технологий;
- оказание наукоемких инжиниринговых услуг;
- трансфер ядерных технологий в другие отрасли, в т. ч. ядерную медицину, промышленность, и применение их для решения экологических проблем.

В соответствии с планируемым развитием площадки НИИАР сформулированы цели, которые отражают перспективу института в качестве корпоративного научнотехнологического центра соответствовать потребностям Госкорпорации «Росатом» и перспективу выхода на новый уровень развития экспериментальной базы:

- повышение эффективности использования исследовательской экспериментальной базы;
- повышение безопасности и улучшение экологии объектов;
- создание экспериментальной базы нового поколения.

3.2. Приоритетные направления деятельности

3.2.1. Реакторное материаловедение и методики испытания материалов и элементов ядерных энергетических установок

Исследовательский комплекс НИИАР является единственным в стране и одним из немногих в мире, где имеется такое сочетание исследовательских реакторов и материаловедческих лабораторий, в которых возможно комплексное решение задач реакторного материаловедения для обоснования топлива АЭС.

Имеющиеся в институте соответствующие методики и установки для послереакторных исследований позволяют проводить всестороннюю аттестацию изменения состояния топлива под влиянием условий его эксплуатации.

Основными коммерческими потребителями высокотехнологичных услуг по данному направлению являются предприятия Росатома: исследовательские и конструкторские организации, разрабатывающие материалы, топливо и компоненты ядерных установок; организации – владельцы и подрядчики по обслуживанию атомных электростанций, а также некоторые промышленные и научные организации других отраслей и ведомств.

НИИАР на протяжении многих лет остается головной организацией отрасли в области проведения испытаний реакторных материалов и элементов активных зон ЯЭУ.

Институт является единственной в России площадкой, на которой проводятся материаловедческие исследования полномасштабных отработавших тепловыделяющих сборок с атомных электростанций. НИИАР является независимым экспертом между эксплуатирующей организацией и поставщиком топлива в части экспериментального определения состояния ТВС и твэлов после эксплуатации в реакторе.

Основные направления исследований:

- разработка теоретических основ реакторного материаловедения;
- методическое и аппаратурное обеспечение материаловедческих исследований, в том числе вопросы обоснования разрабатываемых средств, их проектирование, изготовление, испытание, метрологическая аттестация и применение для реальных измерений;
- исследования работоспособности элементов конструкций ядерных энергетических установок;
- получение данных о физико-механических свойствах облученных материалов на основе структурных, металлографических, электронно-микроскопических и физических исследований, а также внутриреакторных ампульных и петлевых испытаний;
- исследования конструкционных материалов корпусов, внутрикорпусных устройств, трубопроводов первого и второго контуров, оболочек твэлов и чехлов ТВС реакторов различного типа, трансурановых чистых металлов и сплавов, керамик для ядерных и термоядерных энергетических установок.

3.2.2. Физика, техника, облучательные технологии и безопасность ядерных реакторов

Исследовательский реакторный комплекс НИИАР открыт для сотрудничества и оказывает коммерческие услуги зарубежным организациям для прохождения тренировочной практики и обучения в рамках международных соглашений и обязательств Российской Федерации по мирному использованию ядерной энергии.

Основные направления исследований:

- получение экспериментальных данных по физике, теплофизике, теплогидравлике, выходу и распространению продуктов деления, поведению материалов твэлов и ТВС, необходимых для верификации расчетных программ и обоснования безопасности действующих реакторов института, разработок и предложений по новым реакторам;
- моделирование аварийных и переходных режимов эксплуатации твэлов и ТВС, исследования их характеристик в различных режимах;
- разработка методов и технических средств для исследования ТВС, твэлов и их фрагментов в аварийных условиях в реакторах и в защитных камерах;
- разработка и испытания технических средств для диагностики состояния ЯЭУ и безопасной их эксплуатации.

3.2.3. Радиохимия и топливные циклы ядерной энергетики

Институт является единственной в России площадкой, на экспериментальных установках которой проводятся исследования неводных методов переработки ОЯТ, производства гранулированного топлива (в т. ч. с использованием плутония оружейного и энергетического качества), изготовления твэлов методом виброуп-

лотнения, разрабатываются технологии замкнутых топливных циклов, трансмутации и вовлечения в топливный цикл младших актинидов.

Основными коммерческими потребителями результатов НИОКР по данному направлению являются организации Госкорпорации «Росатом».

Основные направления исследований:

- разработка технологий переработки облученного ядерного топлива, вовлечения в топливный цикл плутония оружейного и реакторного качества пирохимическими методами;
- разработка пирохимических технологий получения ядерного топлива и топливных композиций, в том числе с использованием трансплутониевых элементов;
- разработка конструкций и технологии изготовления твэлов методом виброуплотнения и ТВС с использованием таких твэлов;
- разработка методического и аналитического обеспечения процессов переработки и паспортизации топлива;
- создание, испытание и эксплуатация оборудования и опытных установок по подготовке и переработке гранулированного топлива;
- создание и эксплуатация автоматизированной дистанционно обслуживаемой линии изготовления и контроля твэлов и ТВС со смешанным оксидным топливом;
- разработка технологии трансмутации младших актинидов и долгоживущих продуктов деления;
- разработка технологии обращения с радиоактивными отходами, образующимися в процессах;
- разработка и развитие расчетных методов, баз данных и экспертных систем.

3.2.4. Радионуклидные источники и препараты

Основные направления исследований:

- научные и технические разработки, направленные на повышение эффективности накопления радионуклидов;
- исследование свойств трансплутониевых элементов в обоснование технологии их выделения и изготовления источников;
- разработка технологии выделения радионуклидов из облученных мишеней;
- разработка конструкции и технологии изготовления источников ионизирующих излучений;
- метрологическое обеспечение, паспортизация источников и препаратов, контроль технологического процесса, его автоматизация; получение актинидов в металлическом состоянии, исследование их свойств применительно к изготовлению источников;
- радиометрический и масс-спектрометрический методы анализа образцов радионуклидных препаратов и источников;
- изучение ядерных данных в обеспечение исследований по наработке радионуклидов.

3.2.5. Услуги по энергоснабжению

Энергохозяйство играет существенную роль в экономике НИИАР, обеспечивая подразделения энергоресурсами по низким ценам, принося значительный доход от продажи сторонним потребителям.

Кроме исследований по основным научным направлениям институт оказывает практически весь спектр услуг по энергоснабжению:

- генерацию тепловой энергии;
- генерацию электроэнергии;
- транспортировку тепловой энергии;
- транспортировку электроэнергии;
- горячее водоснабжение;
- производство и транспортировку хозяйственно-питьевой воды;
- водоотведение с промплощадок и перекачку стоков с западной части города Димитровграда;
- производство и транспортировку технической воды;
- производство криогенной продукции.

3.3. Территориальное расположение

НИИАР расположен на среднехолмистой местности, покрытой на 70 % смешанным лесом, вблизи г. Димитровграда Ульяновской области.

Почвы в районе размещения НИИАР в основном серые лесные, легкие суглинки и супеси, малоплодородные с незначительной мощностью плодородного слоя.

Объекты НИИАР сосредоточены на 5 промышленных площадках и занимают около 3135 гектаров земельных ресурсов:

- на промплощадке № 1 расположены объекты использования атомной энергии;
- на промплощадках № 2, 3, 4 и 5 производственно-технологические объекты, производство тепла и воды, социальные объекты.

Промплощадка №1 расположена в 5 км от Черемшанского залива и в 6 км от реки Ерыклы. Ближайшие населенные пункты – поселок городского типа Мулловка (3 км) и город Димитровград (8 км). Утвержденный при проектировании НИИАР радиус санитарно-защитной зоны составляет 5 км.

4. ОСНОВНЫЕ ДОКУМЕНТЫ, РЕГУЛИРУЮЩИЕ ПРИРОДООХРАННУЮ ДЕЯТЕЛЬНОСТЬ

4.1. Нормативно-правовые акты РФ

В НИИАР работа по природоохранной деятельности ведется на основе законодательства и нормативно-правовых актов РФ:

- федеральный закон «Об охране окружающей среды» от 10.01.2002, №7 ФЗ;
- Водный кодекс РФ от 03.06.2006, №74 ФЗ;
- федеральный закон «Об отходах производства и потребления» от 24.06.1998, № 89 ФЗ;
- федеральный закон «Об охране атмосферного воздуха» от 04.05.1999,
 №96 ФЗ;
- федеральный закон «О радиационной безопасности населения» от 09.01.1996, №3 ФЗ;
- федеральный закон «О санитарно-эпидемиологическом благополучии населения» от 30.03.1999, №52 ФЗ;
- федеральный закон «Об использовании атомной энергии» от 21.11.1995,
 №170 ФЗ;
- федеральный закон «О внесении изменений в статью 16 федерального закона "Об охране окружающей среды" и отдельные законодательные акты РФ» от 30.12.2008, №309 ФЗ;
- Санитарные правила СП 2.6.1.758-99 «Ионизирующее излучение, радиационная безопасность. Нормы радиационной безопасности НРБ-99» (утв. Главным государственным санитарным врачом РФ 2 июля 1999 г.);
- Постановление Правительства РФ «О нормативах платы за выбросы в атмосферный воздух загрязняющих веществ стационарными и передвижными источниками, сбросы загрязняющих веществ в поверхностные и подземные водные объекты, размещение отходов производства и потребления» от 12.06.2003, №344.

4.2. Перечень разрешающей документации по охране окружающей среды для ОАО «ГНЦ НИИАР»

- Проект нормативов предельно допустимых (ПДВ) и временно согласованных (ВСВ) выбросов загрязняющих веществ в атмосферу.
- Проект расчета нормативов образования отходов и лимитов на их размещение.
- Разрешение на выбросы вредных (загрязняющих) веществ в атмосферный воздух.
- Разрешение на допустимые пределы (нормативы) выброса радиоактивных веществ в атмосферу.

4.3. Лицензии

- Лицензия на осуществление деятельности в области гидрометеорологии и в смежных с ней областях.
- Лицензии на право пользования недрами.
- Лицензия на обращение с радиоактивными отходами при их хранении и переработке.
- Лицензии на водопользование поверхностными водными объектами.

5. СИСТЕМЫ ЭКОЛОГИЧЕСКОГО МЕНЕДЖМЕНТА И МЕНЕДЖМЕНТА КАЧЕСТВА

5.1. Экологический план

В НИИАР осуществляется постоянный контроль радиационной обстановки на территории промплощадки, созданы и действуют единая система контроля радиационной безопасности, система АСКРО, абонентский пункт Ситуационно-кризисного центра Госкорпорации «Росатом» и отраслевой Центр сбора и анализа информации по безопасности исследовательских ядерных установок.

В области защиты окружающей среды НИИАР руководствуется требованиями российского законодательства и нормами международного права.

В институте выполняется Программа экологического мониторинга воздействия предприятия на объекты санитарно-защитной зоны и зоны наблюдения НИИАР, Программа по охране окружающей среды, воздушного бассейна и водных объектов санитарно-защитной зоны и зоны наблюдения.

Институт принимает участие в федеральной целевой программе «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года».

В НИИАР функционирует отдел охраны окружающей среды, разработана и внедрена система надзорных мероприятий, проводятся семинары и выполняются образовательные программы в области охраны труда и защиты окружающей среды.

5.2. Менеджмент качества

Система качества НИИАР была разработана в 1996 г. в соответствии с международным стандартом ИСО 9001:1994 «Система качества – модель для обеспечения качества при проектировании, разработке, производстве, монтаже и обслуживании». В 2003 г. система менеджмента качества была приведена в соответствие с ГОСТ Р ИСО 9001-2001 «Системы менеджмента качества. Требования».

Действующая в институте система менеджмента качества (СМК) представляет совокупность организационной структуры, методик, процессов и ресурсов, необходимых для выпуска высококачественной продукции. Системой менеджмента качества охвачен весь спектр продукции, производимой в институте, и оказываемых услуг.

Система менеджмента качества создана для реализации Политики института в области качества, которая является частью общей политики НИИАР в области научной, технической и производственной деятельности.

Главной целью Политики института в области качества является «выпуск продукции и оказание услуг, полностью удовлетворяющих требованиям и ожиданиям потребителя, реализация основных критериев и принципов обеспечения безопасности действующих в институте ядерно- и радиационно опасных установок и производств, соблюдение законодательства России по охране окружающей природной среды».

Система менеджмента качества НИИАР включает в себя несколько областей, характеризуемых определенным видом выпускаемой продукции или услуг. Деятельность в каждой области описана с учетом требований ГОСТ Р ИСО 9001 в соответствующих комплектах документов.

Кроме того, в систему менеджмента качества НИИАР входят испытательные, аналитические и измерительные лаборатории, деятельность которых описана в соответствующих руководствах по качеству.

В 2007 году в целях обеспечения качества и конкурентоспособности выпускаемой продукции в институте выполнен комплекс работ по сертификации радионуклидных источников в «Системе сертификации оборудования, изделий и технологий для ядерных установок, радиационных источников и пунктов хранения». Сертифицированы все основные типы выпускаемых источников ионизирующих излучений.

Документация системы менеджмента качества включает: документы, обосновывающие способность обеспечивать качество и безопасность при изготовлении оборудования для объектов с ядерными установками, радиационными источниками и пунктами хранения; стандарты организации: общетехнические и организационные, по технологической дисциплине, входному контролю, изготовлению оборудования, испытанию, контролю, приёмке, метрологическому обеспечению.

В состав документации системы менеджмента качества НИИАР входят 138 стандартов организации и 74 программы обеспечения качества на все лицензируемые и другие виды деятельности.

При разработке программ обеспечения качества и других внутренних документов СМК учитывались требования, изложенные в Своде положений МАГАТЭ № 50-C/SG-Q, имеющих международное распространение, национальные стандарты, а также правила и нормы, действующие в области использования атомной энергии.

Право проведения работ в области использования атомной энергии и других видах деятельности в соответствии с Законодательством России подтверждено 43 действующими лицензиями.

Состоятельность системы менеджмента качества института подтверждена рядом внешних аудиторских проверок, проведённых фирмой MDS Nordion S.A. (Бельгия), АЭС «ПАКШ» (Венгрия), ОАО «ТВЭЛ» (в рамках контракта с АЭС «ТЕМЕЛИН») и др.

Для проверки функционирования Системы, выполнения требований программ обеспечения качества и стандартов в институте регулярно проводятся внутренние аудиты, которыми охвачены все основные подразделения.

Система менеджмента качества НИИАР позволяет обеспечить качество изготовления и конкурентоспособность выпускаемой продукции и услуг при безусловной гарантии безопасности действующих в институте ядерно- и радиационно опасных установок и производств.

Проводится планомерное обучение сотрудников института в области качества.

6. ПРОИЗВОДСТВЕННЫЙ ЭКОЛОГИЧЕСКИЙ КОНТРОЛЬ

Производственный экологический контроль радиационной и химической обстановки на территориях промплощадок, в санитарнозащитной зоне и зоне наблюдения осуществляется аккредитованными лабораториями радиационного и химического контроля. Радиационный контроль радиационно опасных производственных участков проводится децентрализованной службой радиационной безопасности института.

Контроль проводится в установленном порядке при согласовании с территориальными органами Федерального медико-биологического агентства, Федеральной службы по экологическому, технологическому и атомному надзору, Нижне-Волжского бассейнового водного управления, Федеральной службы по гидрометеорологии и мониторингу окружающей среды.

В 2009 году лаборатория химического контроля отдела защиты окружающей среды ОАО «ГНЦ НИИАР» подтвердила аккредитацию в Экспертной организации ФГУП ВНИИМС в системе аккредитации аналитических лабораторий на новый срок на техническую компетентность в области анализа природной и сточной воды, почвы, атмосферы, промвыбросов и нефтепродуктов с расширением ранее утвержденной области аккредитации.

В НИИАР созданы и действуют: единая система контроля радиационной безопасности ЕС КРБ и система АСКРО, абонентский пункт СКЦ Росатома.

Осуществление производственного экологического контроля (измерения, наблюдения, оценки) деятельности выполняется в ОАО «ГНЦ НИИАР» по всем разделам охраны окружающей среды.

Виды производственного экологического контроля

Контроль за содержанием загрязняющих веществ на источниках выбросов (37 точек)	Контроль за содержанием загрязняющих веществ в атмосферном воздухе на границе СЗЗ (8 точек) и в жилой зоне (9 точек)	Контроль за содержанием радионуклидов на источниках выбросов
Контроль объемной активности радионуклидов в приземном слое в атмосфере на промплощадке (1 точка)	Контроль объемной активности радионуклидов в приземном слое в атмосфере на территории Комплекса по обращению с радиоактивными отходами	Контроль объемной активности радионуклидов в приземном слое в атмосфере в жилой зоне (2 точки)
Контроль загрязнения радионуклидами снега, растительности и грунтов на территории НИИАР и в жилом районе (10 точек)	Контроль за содержанием загрязняющих веществ в сточных водах в местах выпуска (р. Ерыкла, р. Большой Черемшан, Черемшанский залив), в поверхностных водах в местах выше и ниже выпусков (10 точек)	Биотестирование сточных вод в местах выпуска, поверхностных вод в местах выше и ниже выпусков (3 точки)
Контроль за содержанием загрязняющих веществ в сточных водах промливневой сети подразделений НИИАР (8 точек)	Контроль за содержанием радионуклидов в сточных водах промливневой сети подразделений НИИАР (1 точка)	Контроль за содержанием радионуклидов в сточных водах в местах выпуска (Черемшанский залив), в поверхностных водах в местах выше и ниже выпусков (3 точки)
Контроль за содержанием загрязняющих веществ в подземных водах наблюдательных скважин на территории НИИАР, на территории СЗЗ ОПП и вокруг шламохранилищ ТЭЦ (4 точки)	Контроль за содержанием радионуклидов в донных отложениях Черемшанского залива	Контроль за содержанием загрязняющих веществ в под- земных грунтовых водах (11 наблюдательных скважин)
	Контроль уровней радиационного загрязнения воздуха рабочих зон, поверхностей оборудования, СИЗ и других поверхностей производственных помещений	Контроль вредных химических веществ в воздухе рабочих зон (186 точек)

Объем контроля за радиационной обстановкой в районе размещения ОАО «ГНЦ НИИАР»

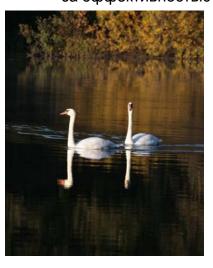
Объект радиационного контроля	Контролируемые параметры
Газоаэрозольные выбросы вентиляционной системы объектов промплощадки №1	Радионуклидный состав газоаэрозольных выбросов, активность выбрасываемых радионуклидов (ИРГ – объемная, аэрозоли – абсолютная)
Периметр промплощадки №1	Мощность дозы гамма-излучения
Территория санитарно-защитной зоны	Мощность дозы гамма-излучения
Сточные воды промышленно-ливневой канализации промплощадки № 1	Общая удельная бета-активность Общая удельная альфа-активность Удельная активность отдельных радионуклидов $\binom{137}{137}$ Cs, $\binom{90}{137}$ Co и др.)
Сточные воды хозфекальной канализации промплощадки № 1	Общая удельная бета-активность Общая удельная альфа-активность Удельная активность отдельных радионуклидов $\binom{137}{137}$ Cs, $\binom{90}{137}$ Co и др.)
Вода поверхностных водоемов и питьевая вода	Общая удельная бета-активность Общая удельная альфа-активность Удельная активность отдельных радионуклидов $\binom{137}{2}$ Cs, $\binom{90}{9}$ Sr, $\binom{60}{9}$ Co и др.)
Грунтовые воды в скважинах	Общая удельная бета-активность Общая удельная альфа-активность Удельная активность отдельных радионуклидов $\binom{137}{2}$ Cs, $\binom{90}{9}$ Sr, $\binom{60}{9}$ Co и др.)
Объекты природной среды на территории СЗЗ и ЗН (почва, растительность, снег)	Удельная активность почвы, растительности, снега
Атмосферный воздух на территории СЗЗ и ЗН	Объемная активность атмосферного воздуха
Продукция сельского хозяйства на территории зоны наблюдения	Удельные активности ¹³⁷ Cs, ⁹⁰ Sr в сельхозпродуктах (зерно, молоко, рыба, овощи, грибы и др.)

6.1. Охрана атмосферного воздуха

Производственный контроль над состоянием загрязнения атмосферного воздуха осуществляется лабораториями радиационного и химического контроля отделов радиационной безопасности и защиты окружающей среды и является частью системы производственного контроля окружающей среды.

Производственный (экологический) контроль проводится:

- за состоянием загрязнения атмосферного воздуха на территориях промплощадок, в их санитарно-защитных зонах и в зоне наблюдения промплощадки №1;
- за состоянием загрязнения приточного воздуха в галереях вентиляционных труб;
- за эффективностью очистки воздуха, выбрасываемого в атмосферу, после пылегазоулавливающих установок и фильтров;
- за состоянием загрязнения атмосферного воздуха в согласованных с Гидрометеослужбой контрольных точках западной части г. Димитровграда.



6.2. Охрана водоемов

Производственный контроль осуществляется лабораториями радиационного и химического контроля и проводится:

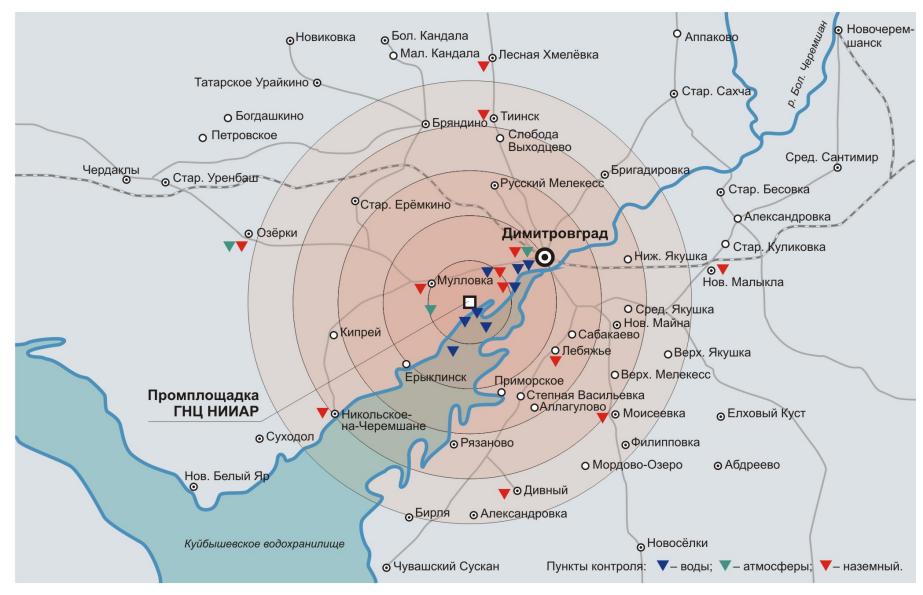
- за качеством забираемой воды из Черемшанского залива Куйбышевского водохранилища и из подземных источников воды;
- за качеством подготовленной хозяйственно-питьевой воды;
- за состоянием загрязнения ливневой, хозфекальной и промышленной канализаций;
- за качеством стоков после очистки на очистных сооружениях;
- за качеством ливневых стоков;
- за эффективностью работы локальных очистных сооружений и ловушек.

6.3. Охрана почв

Производственный контроль за состоянием земель выполняет территориально-хозяйственный комплекс, который осуществляет:

- контроль выполнения мероприятий по предотвращению загрязнения земель нефтепродуктами и вредными веществами, содержащимися в отходах производства, сырье и материалах;
- контроль выполнения подрядными организациями работ по рекультивации земель, предусмотренной проектной документацией.

6.4. Контроль за обращением с отходами производства и потребления


Производственный контроль за обращением с отходами включает:

- контроль за состоянием грунтовых вод в районе шламонакопителей;
- технологический контроль за соответствием вывозимых отходов паспортам;
- контроль за соблюдением направлений вывоза к местам размещения и переработки отходов;
- контроль и учёт количества образующихся и размещаемых отходов;
- плановую паспортизацию отходов;
- санитарно-токсикологические исследования отходов.

Карта-схема расположения постоянных пунктов контроля

6.5. Система радиационно-экологического мониторинга института

Для контроля возможного воздействия института на окружающую природную среду и население разработана система мониторинга радиационного воздействия предприятия и экологического состояния объектов окружающей среды. Система радиационно-экологического мониторинга института включает оперативный и стационарный контроль.

Для оперативного контроля в институте созданы автоматизированные системы радиационного контроля АСКРО (автоматизированная система контроля радиационной обстановки) и СОКВ (система оперативного контроля выбросов), оборудованы передвижные лаборатории радиационного и химического контроля, разработана оперативная система расчетного мониторинга "Нострадамус".

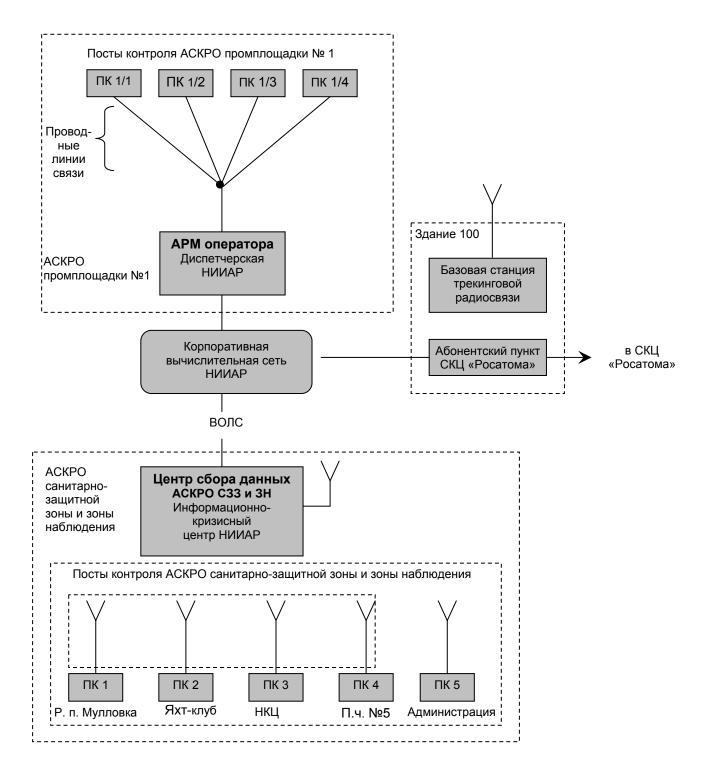
Система радиационно-экологического мониторинга института

Система АСКРО осуществляет непрерывный контроль мощности дозы гамма-излучения в точках контроля, расположенных по периметру промплощадки института. Система имеет высокую чувствительность и надежность, своевременно и адекватно реагирует на все события, связанные с перемещением высокоактивных материалов по территории.

Периметр и внутренняя область промплощадки НИИАР оборудованы постами (16 постов) непрерывного контроля АСКРО, позволяющими в режиме текущего времени непрерывно регистрировать изменения радиационной обстановки. В границах города Димитровграда (санитарно-защитная зона и зона наблюдения) находятся 5 точек контроля АСКРО. Данные с этих точек также в непрерывном режиме реального времени передаются в СКЦ Госкорпорации «Росатом». Такая система принята для всех регионов России, где расположены подобные объекты.

Места размещения постов контроля:

- 1. Р. п. Мулловка (здание больницы).
- 2. Пункт мониторинга окружающей среды (яхт-клуб).
- 3. НКЦ им. Е.П. Славского.
- 4. Площадь Советов (здание администрации города).
- 5. Пожарная часть №5.


Планируется дополнительно разместить посты контроля в следующих пяти пунктах:

- 1) п. Новая Малыкла;
- 2) р. п. Новая Майна;
- 3) с. Рязаново;
- 4) пожарная часть №2 (11-й мкр.);
- 5) п. Озерки.

СОКВ включает в себя отбор и доставку представительных проб к средствам измерений и информационно-измерительную систему.

Контроль активности выбросов радионуклидов в атмосферу осуществляет Центр радиационного контроля ГНЦ НИИАР, аккредитованный на компетентность в выполнении радиационных измерений и зарегистрированный в системе Госстандарта РФ.

Структура автоматизированной системы контроля радиационной обстановки НИИАР

(АРМ – автоматизированное рабочее место; ВОЛС – волоконно-оптическая линия связи; ЗН – зона наблюдения; ПК – пост контроля; СЗЗ – санитарно-защитная зона)

7. ВОЗДЕЙСТВИЕ НА ОКРУЖАЮЩУЮ СРЕДУ

7.1. Забор воды из водных источников

Институт имеет в пользовании следующие водные объекты:

- Черемшанский залив в обозначенных границах для забора воды и сброса сточных вод;
- реку Ерыклу, впадающую в Черемшанский залив, в обозначенных границах для сброса сточных вод;
- реку Большой Черемшан (левый приток р. Волги) в обозначенных границах
 для сброса сточных вод.

Источниками водоснабжения являются:

- подземные источники водоснабжения собственные скважины, расположенные на территории института и загородного лагеря «Факел».
 Забираемая вода используется на собственные хозяйственно-питьевые и производственно-технические нужды, передается населению и предприятиям г. Димитровграда;
- поверхностный водный объект (Черемшанский залив), вода которого используется:
 - на собственные производственно-технические нужды (в том числе горячее водоснабжение ОАО «ГНЦ НИИАР» и объектов соцкультбыта
 г. Димитровграда, находящихся на балансе НИИАР);
 - для передачи на производственно-технические нужды ОАО «ДААЗ»;
 - для передачи промпредприятиям и иным организациям г. Димитровграда с целью горячего водоснабжения, а также для горячего водоснабжения населения западной части г. Димитровграда.

Система водопотребления из поверхностного водного объекта – прямоточная с оборотным использованием воды.

Объемы водопользования:

- забор воды из подземных источников 6515 тыс. м³ в год;
- забор воды из поверхностных источников 15600 тыс. м³ в год.

Схема водоснабжения с применением оборотного водоснабжения в виде замкнутых циклов принята для отдельных видов производств:

- для охлаждения ядерных реакторов (охлаждающая система градирни);
- для мойки в автоцехе;
- в ТЭЦ (элементы оборотной системы водоснабжения шламохранилище и брызгальный бассейн).

Показателем экономии воды за счет систем оборотного водоснабжения может служить объем пропущенной через все градирни воды, составивший в 2009 г. $331 \text{ млн. } \text{м}^3$.

ОАО «ГНЦ НИИАР» осуществляет отопление промпредприятий, населения и других сторонних организаций г. Димитровграда. Объем воды, проходящей по системе отопления за год, – 16050 тыс. м³, режим работы – круглосуточный.

7.2. Сбросы воды в открытую гидрографическую сеть

Объемы водоотведения ОАО «ГНЦ НИИАР» – 4371 тыс. м³ сточных вод.

Отвод сточных вод осуществляется раздельными канализациями: хозяйственно-бытовой, промышленно-ливневой и специальной (для вод, загрязненных радионуклидами).

Загрязненные радионуклидами сточные воды сбрасываются в глубокие (более 1000 м) подземные водоносные горизонты опытно-промышленного полигона.

Производственные и дождевые стоки поступают в отрог Черемшанского залива, образовавшийся на месте бывших торфяных выработок.

Сточные воды с ТЭЦ перед сбросом в систему промышленно-ливневой канализации пропускаются через нефтеловушку. Сточные воды от транспортного цеха после предварительной очистки на очистных сооружениях отводятся в р. Ерыклу.

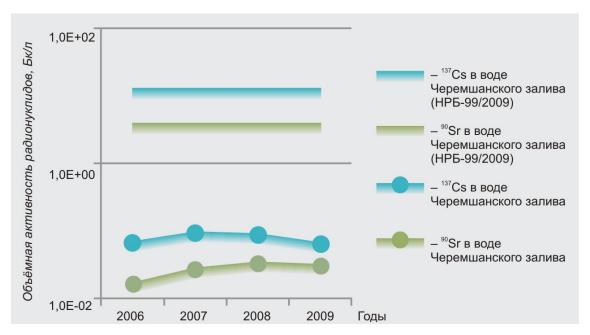
Сброс хозяйственно-бытовых вод с объектов загородного лагеря «Факел» после очистки с применением биологических методов производится в р. Большой Черемшан.

7.2.1. Сбросы вредных химических веществ

Плановый контроль содержания вредных химических веществ в промышленных стоках, а также в фоновых (200 м выше выпуска в водный объект) и контрольных створах (500 м ниже выпуска в водный объект) проводится в соответствии с установленными процедурами.

В течение 2009 г. выполнен ряд мероприятий, что позволило:

- снизить концентрации по всем загрязняющим веществам (сточная вода выпуска в Черемшанский залив) до уровня ниже предельно-допустимых концентраций (ПДК) для воды рыбохозяйственных водоемов;
- в среднем в 10 раз (ниже ПДК) снизить концентрацию в стоках выпуска в р. Ерыклу нефтепродуктов, в 2 раза концентрацию железа и меди.

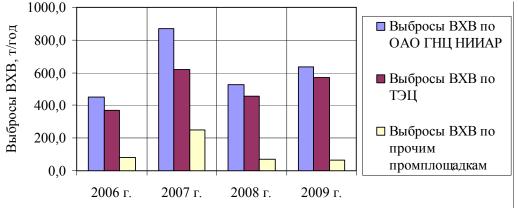

Сбросы загрязняющих веществ в поверхностные водные объемы (на основании данных Госстатотчетности)

Основные загрязняющие вещества	Установленный предельно допустимый	Фактический сброс в 2009 году			
	сброс (ПДС), т	Т	% от нормы		
Сброс в Черемшанский з	алив Куйбышевск	сого водохр	анилища		
БПК полн.	14,6649	6,3994	43,6		
Сухой остаток	2844,99	32,1449	1,1		
Азот аммонийный	1,8087	0,0106	0,6		
Нитрат-ион	5,1949	0,0364	0,7		
Нитрит-ион	0,3213	0,002	0,6		
Сульфат-анион	475,6315	6,5927	1,4		
Хлорид-анион	257,3689	85,6544	33,3		
Медь	0,0049	0,0001	2,0		
Цинк	0,0391	0,0002	0,5		
СПАВ	0,0733	0,044	60,0		
Фосфаты	0,3422	0,006	1,8		
Нефтепродукты	0,2444	0,0877	35,9		
Сброс в р. Ерыклу					
БПК полн.	0,0583	0,0487	83,5		
Взвешенные вещества	0,5475	0,2615	47,8		
Сухой остаток	11,9876	10,6184	88,6		
Азот аммонийный	0,0097	0,0015	15,5		
Нитрат-ион	0,112	0,0334	29,8		
Нитрит-ион	0,0016	0,0006	37,5		
Сульфат-анион	2,13	1,8052	84,8		
Хром (III)	0,0018	0,0009	50,0		
СПАВ	0,0125	0,0007	5,6		
Фосфаты	0,0018	0,001	55,6		
Нефтепродукты	0,005	0,0034	68,0		
Сброс в р. Б. Черемшан (детский лагерь "Факел")					
Взвешенные вещества	0,411	0,194	47,2		
Нитрат-ион	0,0351	0,0274	78,1		
Нитрит-ион	0,0012	0,0012	100,0		
СПАВ	0,0075	0,0008	10,7		

7.2.2. Сбросы радионуклидов

ОАО «ГНЦ НИИАР» не проводит сбросы радионуклидов в открытые поверхностные водоемы.

Контроль выпуска сточных вод промышленно-ливневой канализации промплощадки № 1 в Черемшанский залив Куйбышевского водохранилища р. Волги показывает, что содержание радиоактивных веществ в стоках вследствие смывов дождевыми и талыми водами с территории промплощадки № 1 и поверхности водосбора, находящейся в зоне воздействия радиоактивных выбросов предприятия, незначительно.



Динамика изменения удельной активности радионуклидов в воде Черемшанского залива в 2006–2009 гг. в сравнении с нормативами, установленными в HPБ-99/2009

7.3. Выбросы в атмосферный воздух

7.3.1. Выбросы вредных химических веществ

Выбросы вредных химических веществ (ВХВ) осуществляются на основании разрешений, выданных Управлением по экологическому, технологическому и атомному надзору по Ульяновской области.

Динамика изменения количества выбросов ВХВ в атмосферный воздух вследствие деятельности НИИАР за 2006—2009 гг.

Основным источником выброса загрязняющих веществ является вентиляционная труба ТЭЦ (до 85 % от общего количества выбросов).

Изменение количества выбрасываемых ВХВ зависит от количества сжигаемого газа и мазута в котельных.

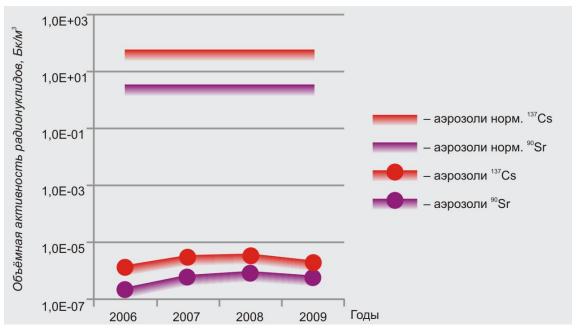
Выбросы загрязняющих веществ в атмосферный воздух за 2009 г. (на основании данных Госстатотчетности)

Загрязняющие	Установленные нор-	Фактический выброс			
вещества	мативы, т/год (расчетный ПДВ)	общий за год, т	% от ПДВ	в т. ч. без очистки, т/год	
Газообразные, в т.ч.:	-	619,9	-	619,9	
сернистый ангидрид	329,0	226,0	68,7	226,3	
двуокись азота	313,5	274,4	87,5	274,4	
окись углерода	148,6	109,5	73,7	109,5	
прочие		1,6		1,6	
Твердые, в т. ч.:		16,7		8,8	
сажа	4,4	3,7	84,8		
прочие		12,2		8,8	

7.3.2. Выбросы радионуклидов

За 2009 год допустимые нормы выбросов не были превышены ни по одному источнику.

Динамика выбросов радионуклидов относительно допустимой нормы в период 2001–2009 гг.


Выбросы радиоактивных веществ в атмосферу за 2009 год

n.	Разрешенный	Фактический выброс	
Радионуклиды	выброс*, Бк	Бк	% от допусти- мой нормы
Инертные радиоактивные газы	$1,73\cdot10^{15}$	$9,59\cdot10^{14}$	53,2
Альфа-излучающие аэрозоли, в том числе:	5,24·10 ⁸	9,26·10 ⁶	0,3
изотопы плутония	$4,95\cdot10^{8}$	$7,19\cdot10^6$	0,2
Бета- и гамма-излучающие аэрозоли**, в том числе:	1,28·10 ¹²	2,73·10 ⁹	0,4
цезий-137	5,86·10 ⁹	2,46·10 ⁸	0,2
стронций-90	8,72·10 ⁹	1,27·10 ⁷	0,001
иод-131	1,26·10 ¹²	$9,12\cdot10^{8}$	0,02

Примечание:

- * В качестве нормы разрешенного выброса всей группы приведена сумма допустимых выбросов радионуклидов, входящих в данную группу.
- ** В качестве годового допустимого выброса для суммы бета- и гамма-излучающих аэрозолей приведена сумма допустимых выбросов радионуклидов, отнесенных к данной группе, с периодом полураспада более 24 часов; значение выброса суммы бета-, гамма-излучающих аэрозолей также является суммой выбросов радионуклидов, отнесенных к данной группе, с периодом полураспада более 24 часов.

Отбор проб на содержание радиоактивных веществ в атмосферном воздухе осуществляется постоянно действующими пробоотборными устройствами в трех пунктах: на расстоянии 0,5–1 км от центра СЗЗ, в западной части города и в р. п. Мулловка (5–7 км).

Динамика изменения среднегодовой концентрации радионуклидов в атмосферном воздухе C33 и 3H института за 2006–2009 гг.

Среднегодовая концентрация радионуклидов в атмосферном воздухе на шесть порядков меньше допустимой для населения, установленной в нормах НРБ-99/2009, что свидетельствует об отсутствии радиационного воздействия на население со стороны НИИАР, поддерживающего высокий уровень радиационной безопасности функционирования института.

7.4. Отходы

7.4.1. Обращение с отходами производства

В институте вследствие производственной деятельности образуются приблизительно 40 видов отходов производства и потребления.

Основная масса отходов (~99% от общей массы) являются малоопасными и практически неопасными отходами для окружающей среды IV и V классов опасности.

Объемы существующих на предприятии объектов размещения отходов соответствуют нормативным объемам накопления и хранения отходов при условии соблюдения фактической периодичности вывоза отходов на переработку, уничтожение и захоронение.

По данным на конец 2009 года на временных площадках накоплено 40,4 т отходов. Фактическое образование отходов за 2009 год не превышает установленных для НИИАР лимитов.

Объем образовавшихся в 2009 году отходов меньше на 5% по сравнению с аналогичным показателем за 2008 год.

Количество отходов производства НИИАР в 2009 г.

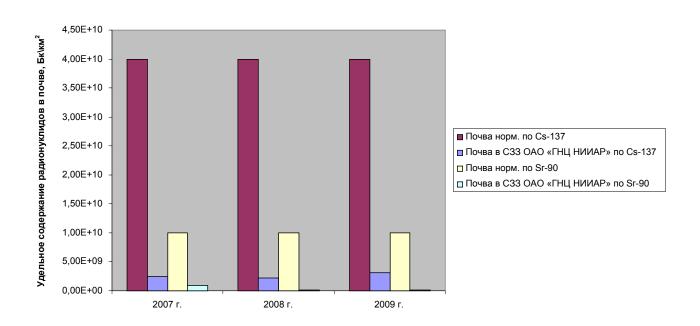
Вид отходов, сгруппированных по классам опасности для окружающей природной среды	Количество образовавшихся отходов за 2009 г., кг	Количество отходов, переданных другим организациям за 2009 г. (для использования, захоронения или обезвреживания), кг	Количество отходов, размещённых на собственных объектах за 2009 г., кг
ВСЕГО, в т. ч.:	2568,375	568,597	2241,104
по I классу опасности	2,624		3,853
по II классу опасности	1,48	-	13,035
по III классу опасности	8,489	7,643	31,702
по IV классу опасности	2161,253	167,353	2188,3
по V классу опасности	394,529	393,601	4,214

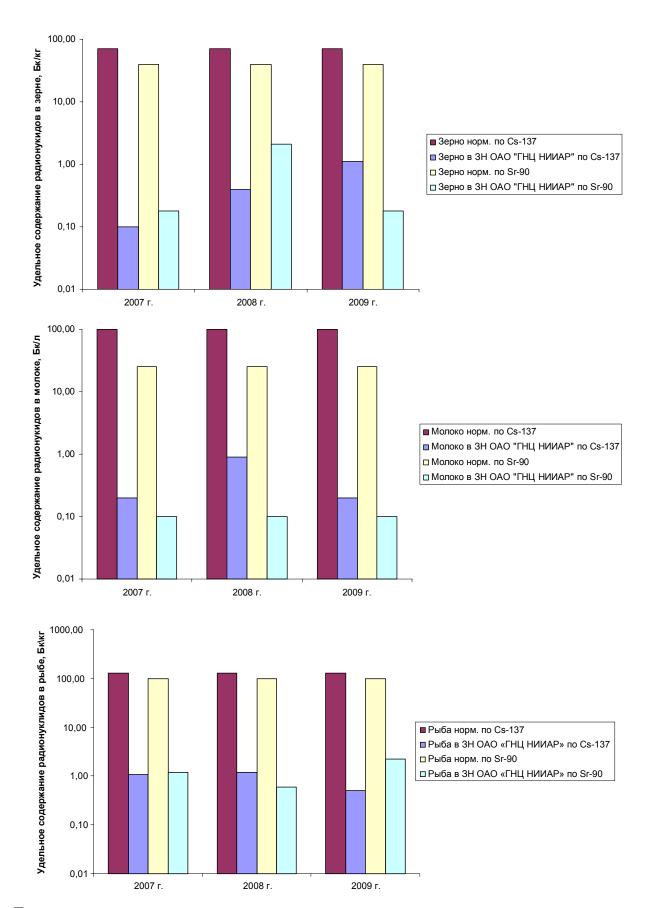
7.4.2. Обращение с радиоактивными отходами

Количество радиоактивных отходов НИИАР за 2009 год

	Количество РАО, ОЯТ			Суммарная активность, Бк		
Показатель	m ³	Т	шт.	альфа- излучающих нуклидов	бета-, гамма- излучающих нуклидов	
Образовавшиеся отходы	$4,81837\cdot10^4$	$9,13465\cdot10^3$	5558	$1,51\cdot10^{12}$	$1,47 \cdot 10^{15}$	
Отходы, переданные сто- ронним организациям	-	3,2274·10 ⁻¹	307	-	-	
Переработанные отходы	66,5	12,5494	4	-	$6,08\cdot10^{8}$	

7.5. Удельный вес выбросов, сбросов и отходов ОАО «ГНЦ НИИАР» в общем объеме по территории

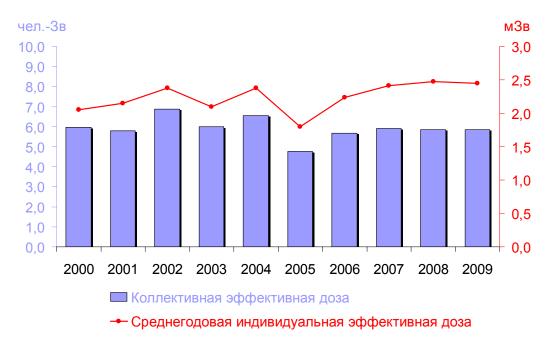

В 2009 году выбросы от стационарных источников загрязняющих веществ в атмосферу городов и населенных пунктов, расположенных на территории Ульяновской области, составили ~42,53 тыс. тонн, в том числе вклад НИИАР в валовом выбросе загрязняющих веществ от предприятий области составил 0,63 тыс. тонн, что соответствует 1,48%.


Объем отходов производства и потребления по Ульяновской области составил **593,87** тыс. тонн, в том числе вклад НИИАР составил **2,6** тыс. тонн, что соответствует **0,43**%.

7.6. Активность основных техногенных радионуклидов в объектах окружающей среды в зоне наблюдения НИИАР

Результаты многолетних наблюдений позволяют сделать вывод о том, что проведение исследований и безаварийная эксплуатация реакторных и технологических установок института оказывают минимальное влияние на радиационно-экологическое состояние объектов окружающей среды и не приводят к значимым дополнительным дозовым нагрузкам на население.

Активность основных техногенных радионуклидов в объектах окружающей среды в зоне наблюдения НИИАР



<u>Примечание:</u> Нормативы допустимой активности взяты из НРБ- 99/2009, СанПиН 2.3.2.1078- 01, СанПиН 2.1.4.1074-01 и "Критерий оценки экологической обстановки территорий для выявления зон экологического бедствия", утвержденных Минприроды РФ 30.11.92 г.

7.7. Показатели облучаемости персонала института

Показатели облучаемости персонала НИИАР в 2009 году находятся на уровне средних значений за последние 10 лет.

В 2009 году случаев превышения предела индивидуальной годовой эффективной дозы облучения не было. Случаев превышения предела индивидуальной суммарной эффективной дозы облучения за 5 лет также не было.

Динамика среднегодовых индивидуальных и коллективных эффективных доз облучения персонала за период с 2000 по 2009 гг.

8. РЕАЛИЗАЦИЯ ЭКОЛОГИЧЕСКОЙ ПОЛИТИКИ В ОТЧЕТНОМ ГОДУ

В институте проводится системная работа по обеспечению радиационной безопасности в соответствии с требованиями.

В 2009 году в институте действовало Разрешение на допустимые пределы выброса радиоактивных веществ в атмосферу, выданное департаментом охраны окружающей среды и экологической безопасности Министерства природных ресурсов России.

В 2009 году все требования данного Разрешения соблюдены, допустимые нормы выбросов не были превышены.

В области защиты окружающей среды НИИАР руководствовался требованиями российского законодательства и нормами международного права.

В институте выполнялись программа экологического мониторинга воздействия предприятия на объекты санитарно-защитной зоны и зоны наблюдения НИИАР, программа по охране окружающей среды, воздушного бассейна и водных объектов санитарно-защитной зоны и зоны наблюдения.

В институте выполнялись мероприятия в рамках федеральной целевой программы «Обеспечение ядерной и радиационной безопасности на 2008 год и на период до 2015 года».

Общая сумма вклада в природоохранные мероприятия составила 12,4 млн. руб., из них инвестиции в основной капитал природоохранного назначения составили 6,4 млн. руб.

Платежи за негативное воздействие на окружающую среду в 2009 году составили 2,03 млн. руб.

9. ОХРАНА ТРУДА И БЕЗОПАСНОСТЬ НА ПРОИЗВОДСТВЕ

Основными обязательствами НИИАР в этой области являются применение высокотехнологичного оборудования и современных методов исследований для создания безопасной и здоровой рабочей среды для учёных, специалистов и рабочих.

Уровень расходов на охрану труда в НИИАР в 2009 г. составил 0,75 % от затрат на производство продукции.

Показатели производственного травматизма в 2009 г.

Показатель	Значение в 2009 г.
Количество случаев	1
Количество дней нетрудоспособности	94
Количество тяжелых, групповых, смертельных случаев	-

10. ЭКОЛОГИЧЕСКАЯ И ИНФОРМАЦИОННО-ПРОСВЕТИТЕЛЬСКАЯ ДЕЯТЕЛЬНОСТЬ

Взаимодействие с общественными экологическими организациями и населением, а также их информирование осуществляется при наличии проблемы и соответствующих запросов организаций и населения.

В 2009 году ОАО «ГНЦ НИИАР» участвовал в выставках, конференциях, конкурсах, смотрах, акциях.

Ежегодно сотрудники института проводят экскурсии школьников и студентов по объектам предприятия.

В выступлениях и интервью директора ОАО «ГНЦ НИИАР» Бычкова Александра Викторовича на телевидении, радио, в газетах затрагиваются вопросы текущего состояния безопасности объектов института, а также направленность политики предприятия на уменьшение негативного воздействия на окружающую среду, персонал и население.

С января 2009 года в Димитровграде реализуется проект «Детская ядерная академия НИИАР» (ДЯА НИИАР). Целями проекта ДЯА НИИАР являются:

- формирование у учащихся представлений о технических специальностях, необходимых НИИАР и атомной отрасли в целом;
- формирование у школьников старших классов приоритетов в изучении дисциплин, необходимых для поступления в высшие учебные заведения на специальности, связанные с атомной отраслью, – физики, химии, информационных технологий.

Проект реализуется сотрудниками ОАО «ГНЦ НИИАР» на базе НКЦ им. Е.П. Славского и в химической лаборатории филиала УлГУ.

В результате подготовлены призёры Всероссийской и Международной олимпиад по химии (2009 г.), 3 победителя областной олимпиады по химии (2010 г.), проведены 8 тематических лекториев. В филиале УлГУ был организован и проведён городской практический тур олимпиады по химии (декабрь 2009 г.).

В рамках проекта ДЯА НИИАР проходят:

- экскурсии в НИИАР;
- родительские конференции;
- семинары для педагогов города;
- лекции для школьников среднего и старшего звена.

Накануне нового года для учащихся школ города Димитровграда была проведена Новогодняя химическая сказка. Руководитель курса по химии «Детской ядерной академии НИИАР» — научный сотрудник института Павел Буткалюк — провел это мероприятие с показом эффектных химических опытов. Ребята — слушатели ДЯА — проводили свои показательные выступления, с удовольствием демонстрируя знания, полученные в Детской ядерной академии НИИАР.

Служба связей с общественностью НИИАР впервые приняла участие в международном экологическом проекте «Живая природа», который курирует доктор биологических наук, телеведущий Николай Дроздов.

Предложенная информация расширила представление подрастающего поколения Ульяновской области о роли Мирного атома в жизни человека, об атомной энергетике и деятельности ОАО «ГНЦ НИИАР».

11. АДРЕСА И КОНТАКТЫ

ОАО «Государственный научный центр – Научно-исследовательский институт атомных реакторов»

433510, Россия, Ульяновская область, Димитровград-10

Тел.: (84235) 32727, факс: (84235) 32727

E-mail: niiar@niiar.ru
Web site: www.niiar.ru

Директор:

Бычков Александр Викторович

Первый заместитель директора – главный инженер:

Святкин Михаил Николаевич

Заместитель главного инженера по безопасности:

Гремячкин Владимир Анатольевич

Главный эколог:

Соболев Александр Михайлович

Начальник отдела защиты окружающей среды:

Шкоков Евгений Иванович

Начальник пресс-службы: Павлова Галина Львовна